The restricted isometry property meets nonlinear approximation with redundant frames

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fusion Frames and the Restricted Isometry Property

We show that RIP frames, tight frames satisfying the restricted isometry property, give rise to nearly tight fusion frames which are nearly orthogonal and hence are nearly equi-isoclinic. We also show how to replace parts of the RIP frame with orthonormal sets while maintaining the restricted isometry property.

متن کامل

A Generalized Restricted Isometry Property

Compressive Sampling (CS) describes a method for reconstructing high-dimensional sparse signals from a small number of linear measurements. Fundamental to the success of CS is the existence of special measurement matrices which satisfy the so-called Restricted Isometry Property (RIP). In essence, a matrix satisfying RIP is such that the lengths of all sufficiently sparse vectors are approximate...

متن کامل

The restricted isometry property for random convolutions

We present significantly improved estimates for the restricted isometry constants of partial random circulant matrices as they arise in the matrix formulation of subsampled convolution with a random pulse. We show that the required condition on the number m of rows in terms of the sparsity s and the vector length n is m & s log s log n.

متن کامل

The Road to Deterministic Matrices with the Restricted Isometry Property

The restricted isometry property (RIP) is a well-known matrix condition that provides state-of-the-art reconstruction guarantees for compressed sensing. While random matrices are known to satisfy this property with high probability, deterministic constructions have found less success. In this paper, we consider various techniques for demonstrating RIP deterministically, some popular and some no...

متن کامل

Computational Complexity of Certifying Restricted Isometry Property

Given a matrix A with n rows, a number k < n, and 0 < δ < 1, A is (k, δ)-RIP (Restricted Isometry Property) if, for any vector x ∈ R, with at most k non-zero co-ordinates, (1− δ)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ)‖x‖2 In other words, a matrix A is (k, δ)-RIP if Ax preserves the length of x when x is a k-sparse vector. In many applications, such as compressed sensing and sparse recovery, it is desirable to c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2013

ISSN: 0021-9045

DOI: 10.1016/j.jat.2012.09.008